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Abstract 

The isothermal fuel cell model, given in an earlier publication, will be generalized to describe the behaviour of non-isothermal fuel 
cells of co-flow type. To this end the temperature distribution inside a fuel cell in steady state is investigated analytically. A simplified 
relation between the local temperature and the :‘uel utilization is derived and its practical significance elucidated. Furthermore, it is shown 
that the solution of the non-isothermal model is accurately approximated by analytical expressions obtained from a so-called 
quasi-isothermal approach. This new approach yields a similar expression for the cell voltage as derived from the kothermal model. The 
quasi-isothermal approach is also used to make a clear comparison between the isothermal and the non-isothermal fuel cell model. C I998 
Elsevier Science S.A. 

Ke~~ord,~: Fuel cells: Analytical model; Cell voltagz; Current density distribution: Temperature distribution; Fuel utilization 

1. Introduction 

In a previous article [I] the setup of an isothermal model for a fuel cell in steady state was given. In this model, the local 
fuel utilization II and the cell voltage VCc,, are the solution of an appropriate ‘boundary value problem’ (BVP), based on the 
following quasi-ohmic relation for the local current density i 

Y,( 10 - vcd, = 4 u> (‘1 

where the local equilibrium potential V,,i’u) depends on position through the fuel utilization, II, whereas the quasi-ohmic 
resistance, r; was assumed to be constant. 

An analytical approach for isothermal fuel cells was introduced, based on the linearized Nernst equation 

V34) = v,;(o) -a!11 (2) 

The relation between the parameter CY in Eq. (2) and the Nernst loss was shown and the accuracy of the analytical recults 
was verified by comparison with numerical computations and measurements on a bench-scale molten carbonate fuel cell 
(MCFC; 1000 cm’). 

The isothermal model can be applied if the influence of temperature gradients on the local equilibrium potential and the 
quasi-ohmic resistance is negligible. The local equilibrium potential depends only slightly on temperature [2,3]. but the 
condition of a uniform quasi-ohmic resistance is a major restriction of the isothermal model. 

The objective of this article is: 
1. to develop a non-isothermal. analytical model for fuel cells with co-flow, and 
2. to compare the non-isothermal model with the isothermal model. 

The first item will be realized by generalization of the isothermal cell model to a quasi-isothermal model. The setup of 
the quasi-isothermal model is based on a mathematical method that is similar to ‘Duhamel’s principle’ [4] or the method of 
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‘variation of parameters’ [5]. The quasi-isothermal model will provide similar expressions for the cell voltage of a 
non-isothermal fuel cell, as obtained il Ref. [I] for an isothermal fuel cell. 

2. Non-isothermal model for fuel cellls with co-flow 

2. I. Pmblem definition 

As in the isothermal model [1], a rectangular flat plate fuel cell is considered, but the cell temperature and the 
quasi-ohmic resistance. r, are no longer assumed to be uniform. The other assumptions that underlie the isothermal model 
will be maintained and are listed in Table I. The cell part between two cross sections of the cell is called ‘subcell’. An 
example of a subcell is shown in Fig. I. Since the current collectors will not affect the problem, they are omitted in this 
figure. Furthermore, it is assumed that the whole cell and all subcells are thermally insulated. During the setup of the model, 
the generality of this latter assumption with respect to insulated fuel cell stacks will be made clear. 

For a fuel cell operating in steady :state with co-flow, the temperature will be almost uniform over a cross section of the 
cell. For instance, temperature differences over a cross section of an MCFC or solid oxide fuel cell (SOFC). with co-flow. 
are in the order of 10 K [6]. It is, therefore, convenient to assume a uniform gas temperature over a cross section of the cell 
(assumption 7 in Table 2). Denoting the local temperatures of the anode and cathode gases by T, and Tc, respectively. this 
means that 

T(x) =T,(x) =T,(x) 

Since T1( x) and T,(x) are not really identical, the proper T(x) actually represents a mean gas temperature. Nevertheless, 
the local equilibrium potential depends only slightly on temperature and will be a function of T(x) and, of course, a 
function of the local gas compositions, in a very good approximation. The quasi-ohmic resistance is usually very sensitive 
to temperature, but in a first approac’7 it can also be considered as a function of T. Moreover, the expression that will be 
derived for the local gas temperature, T, requires only a slight modification in order to approximate the hardware 
temperature. Hence. the small loss in accuracy by considering the quasi-ohmic resistance as a function of T i\ easy to 
compensate. 

The local fuel utilization in the non-isothermal model will be distinguished from the corresponding variable in the 
isothermal model, by writing G and U, respectively. As in the isothermal model, the local gas compositions can be 
calculated from the local fuel utilizat on G. So, neglecting the hydrostatic pressure gradients (assumption 6 in Table I), the 
local equilibrium potential ceq and the local quasi-ohmic resistance 7 can be considered as functions of fi and T. 
Analogously to Eq. (1). the expression for the local overpotential can still be written in accordance with Ohm’s law, as 

(3) 
With the use of this current-voltage relation, the BVP derived in Ref. [l] can be generalized to describe also the 

non-isothermal behaviour of fuel cells. 
It is convenient to repeat the original form of this BVP first 

du 1 
- = ,(r,b:r,,,,l- v,,,,). (O<x< 1) dx 

K(a) =o:” U(1) =11, I 

BVP( 1) (isothermal) 

with x the scaled distance to the cell inlet, II, the total fuel utilization, ii, the equivalent input current density of the fuel 
supplied and Tee,, the uniform cell tc,mperature. 

Table I 
Overview of the basic model assumptions, equal to those for the isothermal model [I] 

I Stationary fuel cell (time independent) 
2 Large oxidant flovr: negligible oxidant utilization with respect to the Nernst loss 
3 Changes in fuel composition are significant in the directlon of the cell outlet only 
4 The local overpotential depends linearly on the local current density through a quasi-ohmic resistance 
5 All reactions in ths gas phase are in equilibrium 
6 Negligible pressure drops (uniform pressure) 
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imaginary subcell 

1-I 10 szparator plate 

Fig. 1. Longitudinal section of the ceil. Without loss of generality the setup of the cell model i\ restricted to an insulated cell for which the heat tran\fer G 

is equal to zero. 

Analogously to the derivation of BVPil), it can be shown from Eq. (3) that the local fuel utilization G(X) and the cell 
voltage fc,,, now satisfy 

dii 
1 -= 

d x Y[ E,T]i,, (~,[W - h). (0 cx- < ‘1 BVP(2) (non _ i50themal) 
ii(O) = 0, ii( 1) = U, 

In BVP(2) the local temperature and the quasi-ohmic resistance depend on position, whereas in BVP(1) these quantities 
are uniform. Evidently, for arbitrary quasi-ohmic resistances, t- and 7, the cell voltages in BVP(1) and BVP(2) are not 
equal. Therefore, the cell voltage in BVP(2) is also marked with a tilde. 

When solving BVP(2). we will consider the local temperature as a function of the local fuel utilization LI, rather than of 
the position x. It will be shown that the description of T in terms of G is relatively simple and very effective. Once BVP(2) 
is successively elaborated with an expression for T(L) and solved for the set ($~),v~,,,), the local current density XX) can 
be calculated from the same identity as derived for the isothermal model 

dll: 
i-(x) = i,“z (x) (O<x< 1) (4) 

In a fuel cell stack the operating conditions for the individual cells will vary. Nevertheless, test results suggest that the 
influence of stacking on the cell performance is limited by applying sophisticated stack designs [7-91. In that case only the 
performance of the cells at top and bottom of the stack will be essentially different from the other cells. Consequently, for 
an insulated stack with co-flow it suffices to consider a single cell, imposing adiabatic boundary conditions [6.10,1 I]. In 
fact, if the net heat release through the separator plates of an individual cell would not be zero, heat would be released from 
all cells (because of their equivalence) 2nd. hence, from the insulated stack as a whole, which is a clear contradiction. 
Consequently, it is irrelevant whether the separator plates inside the stack are thermally insulating or conducting, since we 
use a uniform (i.e. mean) temperature over a cross section of the cell. Though the setup of the model is given for an 
insulated cell, it also holds approximately for one cell of an insulated stack. Since thermal insulation of a whole stack is 
subject to practical difficulties, many literature data are dedicated to numerical stack models that also simulate the influence 
of heat transfer from the stack surface to the surroundings ([ 12- 141). Furthermore, in Ref. [I 51 the temperature distribution 
in a fuel cell stack of co-flow type is analytically investigated under the assumptions of a fixed temperature at the stack 

Table 2 

Extension of the basic model assumptions to the non-isothermal model, and additional assumptions (IO and 1 I) that underlie the linear relation between 

temperature and fuel utilization 

7 Anode and cathode gases almost have the same local temperature, i.e. the gas temperature, T, 

is considered to be uniform over a cross section of the cell 

8 Thermally insulated cell 

9 The cell surface is much larger than a cross section of the cell (practically insulated subcells) 

10 Negligible heat production by non-electrochemical reactions in the gas phase 

11 The total heat capacity of the process flows is almost uniform (large oxidant flow) 



boundary and a uniform heat generation inside the stack. Nevertheless, modeling results show that the major impact of heat 
release from a stack is restricted to the cells near the stack boundary. 

In general, the cell surface is muc,h larger than a cross section of the cell (assumption 9 in Table 2). Because of the 
relatively small cross section. conduction of heat will hardly contribute to the total transport of heat in the flow direction of 
the gases ‘. It is realistic to assume that transport of heat in the flow! direction happens by means of convection only. Then, 
all subcells may be considered as being insulated too. It is noted that heat conduction perpendicular to the flow direction is 
significant., since it has a major contribution to the transfer of heat from the hardware, i.e. the electrode-electrolyte 
assembly, to the gas flows. 

Since all subcells are essentially insulated, the local increase in temperature of the process flows can be calculated from 
their heat capacities and the local heal production. In Section 2.2 the details of this step will be given and a relation for the 
local temperature in terms of ~1 will be introduced. In Section 3. a mapping 11 + u, that transforms the non-isothermal 
problem BVP(2) to the isothermal prablem BVP(1). will be introduced. The transformed problem will be referred to as the 
quasi-isothermal problem and can be used to generalize the results and conclusions that are given in Ref. [I] for an 
isothermal fuel cell. 

2.2. Determination of the local temperature 

2.2.1. A general expression ,for the local temperature 
Since all subcells are considered to be thermally insulated, energy is transferred across the border of a subcell by the 

electric current or the gas flows. but not by a heat flux. The entire heat production inside a subcell will contribute to the 
increase in the temperature of the gas flows. Since the cell is operating in steady state, the temperature of the cell hardware 
will not change. Only the gases are heated and consequently only the heat capacities of the gas flows will be relevant to 
determine the temperature rise in the cell. The local heat capacity of the anode flow is denoted by ti,(E)~r,~(fi), where 
liz,(ii) and ~.r,~( ii) are, respectively, the local anode mass flow and the corresponding local specific heat at constant pressure. 
Using a similar notation for the local heat capacity of the cathode flow, the total heat capacity of the anode and cathode 
flows is given by ti,(ii>c,,,(l?) + +~,(l;;)cr.~(E). This heat capacity is a function of the gas compositions only. assuming that 
the anode and cathode flows are mixtures of gases with constant specific heats I’. It determines the amount of heat necessary 
to achieve an increase in gas temperature, T, of one Kelvin. Hence, the amount of heat related to the temperature rise in an 
insulated subcell at the cell inlet (see Fig. J), is given by 

[ h,( fi)c,,J ii) + tiiz,( E)c,,,( 17)] [T( ii) - T(O)] = L&erma,[ E,T- T(O)] (5) 

The quantity A titherma, equals the amount of heat, per unit of time, that would be released if the local gas t‘lows are 
cooled from the local temperature T(G) to the inlet temperature of the cell T(0). Below we will derive an expression for this 
quantity, from the first law of thermodynamics. 

Neglecting changes in potential and kinetic energy of the process flows, the first law states that the heat added to an open 
system in steady state is equal to the change in enthalpy hk of the process flows, per unit time, plus the power, 14’. that is 
delivered by the system [17] 

Q=H,,,-l&y WrAH+ w (6) 

The power necessary to achieve changes in the volume of the process flows is taken into account by the term A/i. In the 
case of a fuel cell, the term W represents the electrical power that is delivered to the external load resistance, i.e. the product 
of the cell voltage and current. Furtb:rmore, for an insulated subcell the added heat per unit time e is zero. So, for an 
adiabatic subcell at the cell inlet. in which a fraction 17 of the fuel supply is utilized, the first law is expressed by, 

W(E) = -M@,T]. W(G) = vc,,, r,,ii (7) 

Changes in thermodynamical state properties. such as the enthalpy, are independent of the many possible ways in which 
the change of state can be achieved [17]. For example. the change in enthalpy A& ii,T] could equally well be the result of 
an isothermal process and a non-isothermal process. successively causing the changes in gas compositions and the increase 
in temperature. In Fig. 2, these subprccesses are schematized. Without loss of generality we may state that the work, W, is 

’ The justification of this statement follows from a dimension analysis;. 
’ The specific heats at constant pressure will be calculated for the average temperature of the fuel cell. Changes in the specific heats due to temperature 

rise in the cell will be neglected. This is normally allowed, at least for reasonably limited temperature ranges [161. 
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Fig. 2. Schematic representation of the two subproce:;ses that equal the change in enthalpy of the gas flows through an insulated subcell at the cell Inlet. 

delivered by the isothermal subprocess only. Then the change in enthalpy in the non-isothermal subprocess is due to heating 
only. In other words, the second subprocess yields the quantity A&,,,,,, that is needed in Eq. (5) 

Atii[ii,Tl = Atiisoth*rmal [X(O)] + Ati<jtherma,[ii,T- T(O)] (8) 
In Eq. (8), the term Afilsotherma,[G;T(0)] refers to th e 
The quantity - A ~,i,,,,,,,,,,[l?;T(0)] 

isothermal enthalpy difference due to changes in the gas compositions. 
would be the equivalent of the released heat if the gases would be converted in an 

isothermal system without power generation (W = 0). However, in a fuel cell the change in enthalphy is controlled by the 
processes in the electrode-electrolyte assembly and - A fijsrirhprnra, is partially converted into electrical power, see Fig. 2. 
Unfortunately, it is not fully converted into electrical power and the remaining part still represents a heat production. Since 
the produced heat cannot be released from the insulated subcell by means of conduction, the temperature of the gases will 
increase. This gives rise to an extra change in enthalpy, which is represented by the second term on the right-hand side of 
Eq. (8). The first law (Eq. (7)) relates the ret change in enthalpy to the delivered power, W. Substitution of Eq. (8) into Eq. 
(7) yields 

fee,, r,,E = -A fkt~ermat [ V(O)] - A&erma~[ c,T - W91 

Using Eq. (9) to elaborate Eq. (S), the local temperature can be written as 
(9) 

T( is,,,,) = 7-(O) + - Atjiwthermal [ f’;T(o)l - YxII ‘Ina 
ril,( ii) CJ 11) + riz,( E) c&( ii) (10) 

Eq. (10) gives the local temperature inside a fuel cell as a function of the local fuel utilization ii and the cell voltage, if 
expressions for A tiii,o,hermd, [ii,T(O)] and the total heat capacity of the process flows are available. In the next section 
simplified expressions for these quantities will be given. 

2.2.2. A simplified expression ,for the locai temperature 
The obtained expression for the local temperature can be simplified considerably, if heat effects due to chemical 

reactions in the gas phase are of minor importance (assumption IO in Table 2). For instance, in general, the heat effect of 
the water-gas shift reaction is small in comparison with the reaction heat of the overall cell reaction. Hence, the simplified 
expression for the local temperature will apply to fuel cells without internal reforming. 

Usually, a reaction heat at constant pressure is directly proportional to the amount of products converted. However. the 
reaction heat A g,50therma,[ ii;T(O)] was defined with respect to the overall process in the gas phase and is not related to one 
reaction. Nevertheless, in the case that the heat production by chemical reactions in the gas phase is negligible (assumption 

Table 3 
Standard gas compositions in mole fractions for an hlCFC 

Anode inlet gas H? co Hz0 co1 CH, 

Before equilibrium 0.64 0 0.20 0.16 0 
After shift (600°C) 0.57 0.07 0.27 0.09 0 

Cathode gas Air 
Homogeneous 0.70 

co2 
0.30 
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Table 4 
Parameter values for an MCFC. correspondin g with the standard gas compositions at atmospheric pressure 

&, 
c,,,(O) c,,,(O) I 111 “11, anode flow volume 
iJ/kg K) (J/kg K) (A) (kg/s) (cm3/s) 

1.299 a 2935 h 1 163h I 0.966~ IO.’ 0.59 

a Value corresponding with an inlet temperature of 600 “C and a total fuel utilization of 95%. Practical values of x depend slightly on the heat effect of the 
shift reaction. Without the correction made for the shift reaction. x would be equal to 1.28 V. irrespective of the total fuel utilization ,nrd the gas 
compositions isee Appendix A). 
h Values determined with respect to the average cell temperature (650 “C). The values for x, c,,,, and cp,’ are based on the JANAF tables. 

10 in Table 21, the reaction heat A Ijj,,,,,~rr,,,m,[ ii;~(O)] WI ‘11 essentially refer to the overall cell reaction only. Consequently, it 
will be directly proportional to the fuel utilization k. hence to the corresponding output current 

a fLther”*al 1 ~:w91 = -x4, L (1’) 
where x is a constant of proportion (,with dimension V>. For ideal gases, this constant depends on the inlet temperature, and 
the overall cell reaction only. In Appendix A, the value of x is calculated for the reaction of hydrogen with oxygen. 
However, if also the water-gas shift reaction occurs, assumption IO is not exactly satisfied and it is convenient to use a 
slightly modified value for x (see Table 4 or Appendix A). This modified value depends also on the inlet gas compositions 
and on the amount of converted CO. 

Furthermore, variations in the total heat capacity of the process flows will be small in the case of a large and almost 
homogeneous oxidant flow. So, it is realistic to treat the total heat capacity as a constant (assumption 1 I in Table 2) ’ 

+ta(iqc,,,(q + riz,( qc&q = tia(o)c,~,(o) + ti,(O)c,,,(O) (‘2) 

Substituting Eqs. (11) and (121 into Eq. (IO), we obtain the required expression for the local temperature 

T( E;<,,,) = T(0) + x - L 
c,,,(O)riz,(O) + cp,c(o)lj2,(o) &lii 

Note that this expression for T(i;<,,,) shows a simple, linear dependence on ii. The term (x- q,,,>l,,a in Eq. (13) 
represents the total heat production inside the fuel cell as a function of the fuel utilization. The term c,,,(Olti,(O) + 
cp~,(O>riz,(O> is the heat capacity of the process flows, based on the inlet gas compositions and the average temperature of 
the fuel cell (see also the footnotes 2 and 3). 

Recall that the set ($x),~~,,,) has to be calculated from BVP(Z), when only the total fuel utilization U, is imposed as a 
boundary condition. Next. the total increase in temperature AT, defined by 

AT == Tout,,, - r,,,,, = T( u, :cc,,,:, - T(0) 

follows from Eq. ( 131, with ii = u,. Another possibility, which will be used in the next section, is to impose both the total 
fuel utilization and the total increase in temperature AT. Then, not only the set (ii(~),f~~,,) has to be calculated. but also the 
amount of oxidant ti,(O) required for cooling. Rewriting Eq. (13) f or Z = U, and using the definition of AT, find 

(14) 

with the total current output I,,, equal to 1,“~~. When the oxidant utilization is neglected, the cell voltage ?,,*, is 
independent of the oxidant supply. In that case, the amount of oxidant required for cooling follows simply from Eq. (141, 
after the cell voltage has been calculated for the imposed values of AT and the cell current Z,,,. When we would take the 
influence of oxidant utilization on the Nernst loss into account, BVP(2) and Eq. (141 would have to bc solved 
simultaneously. 

7 
For an MCFC. the change in the total heat capacity if one mole Hz reacts with a half mole OL is about -7 J/K (6.50 “C). Based on this value, a more 

accurate expression for the total heat capacity is given by tizln(0)cp,~(O)+ 1~~(0)c~,,(O)- 7/,,ii/2F. The last term in this relation represents the influence of 
the overall cell reaction on the total heat capacity; the influence of the shift reaction is still neglected. When working with a constant (average) heat 
capacity, it is recommended to use the value that is obtained by setting ii = 0.5~4, in this relation. However, for MCFCs. the difference with the value &iven 

by Eq. (12) appears to be relatively small (less .han 1% of the total heat capacity) and will be neglected in order to simplify the Eqs. (I?)-(14) LS much as 
possible. Nevertheless, in both cases the calculus is the same. Thus adaption of theac equations is straightforward. 
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local fuel utilization 5(x) 

Fig. 3. Numerical results for the local temperatures inside an MCFC with co-flow, obtained from a detailed numerical model [6] (r,: anode flop. T,: 
cathode flow, r,: electrode-electrolyte assembly). For comparison also the temperature. i-. as calculated from the linear relation in Eq. (13). is shown. 

An analytical expression for the cell voltage will be derived later. First, the accuracy of the simplified expression in Eq. 
(14) will be verified, using a detailed numerical cell model by De Groot [6]. As an example, we consider an MCFC with 
standard gas supply (see Table 3) at an inlet temperature of 600 “C. The corresponding values for x, ~r,~ and cP.c are given 
in Table 4. In this Table also the amount of fuel that corresponds with an equivalent input current of I A is given. From this 
latter value the necessary amount of fuel ca.n easily be calculated if the cell surface, the average current density and the total 
fuel utilization are known: for a 1000 cm2 MCFC, with a current density of 157 mA/cm’ (I,,, = 157 A) and a total fuel 
utilization of 95% (u, = 0.95) the anode mass supply is given by &(O) = (157/0.95) X 0.966 X lo-’ = 1.60 X IO-’ 
kg/s. Furthermore, h T will be set equal to 100 K. 

Extensive numerical computations that take into account variations in temperature over a cross section of the cell as well 
as the utilization of oxidant, the heat release of the shift reaction and changes in the specific heats at constant pressure ‘, 
yield a cell voltage of 0.75 V. The numerically calculated value for the oxidant mass flow is 7.02 X IO--” kg/s, compared 
with 7.00 X 10ee3 kg/s that follows from Eq. (14). For this example the relative error in the analytical expression for tic(O) 
is only 0.3%. In spite of all the assumptions made, the oxidant mass flow is accurately calculated from Eq. (14), under the 
condition that the cell voltage is accurately known ‘. In the previous example, a very high value for the total fuel utilization 
U, was imposed (u, = 0.95). In principle, the validity of Eq. (14) is not restricted to moderate values of u,, but the 
analytical expression for the cell voltage being introduced in the next section will not allow for very high values of u,. 

In Fig. 3, the numerically calculated temperature distribution is plotted as a function of the local fuel utilization a(x). for 
the anode gases as well as for the cathode <:ases. Clearly, both temperatures T, and T,, depend linearly on the fuel utilization 
in very good approximation. Solids and liquids are good heat conductors in comparison with gases. Consequently. the 
electrodes and the electrolyte are practically at the same temperature, say T,, at any cross section. As indicated in the figure, 
the local temperature of the anode flow almost coincides with the hardware temperature T,. It can be shown that this is due 
to the fact that only a small amount of heat has to be transferred to the relatively small anode flow. The large cathode flow 
is used for cooling and so a serious temperature difference between the hardware and cathode gas will exist. Since the anode 
gas temperature T, represents the local temperature of the electrode-electrolyte assembly very well. it should be used to 
determine the quasi-ohmic resistance. However, the introduced mean gas temperature T is the temperature of the gas 
mixture that would be obtained by mixing of the local anode and cathode flows. As illustrated by the figure, T is mainly 
determined by the temperature of the large cathode flow. 

’ In the numerical model [6] the specific heats cp,& and cp,c are considered as functions of both temperature and gas compositions. 
5 Moreover, not all simplifications are essential in order to obtain an expression for tiL(0). For instance, instead of Eq. (12). a more accurate average 

value for the total heat capacity can be used (see Footnote 3). For the MCFC example, the relative error in tic(O) then reduces from 0.3 to 0.1%. 
Furthermore, in order to eliminate assumption 7 in Table 2, the last term in Eq. (13) can be replaced by [cp,.,(OX~,,,,,,, - r,,,,,)/c,,,(OX~,,,,,,,,, - 
T,,,,,)]k,(O). Then. still one inlet temperature is assumed for both process flows and AT is defined as c,,,,,,, - r,,,,,. 



3. Quasi-isothermal approach for an MCFC with co-flow 

3.1. Problem definition fh- an MCFC, bused on u linearized Nernst equation and a simple expression for P 

Now that we have expressed the local temperature in terms of the fuel utilization, BVP(2) can be reduced to a model 
problem equivalent with the isothermal ‘analytical cell model’ introduced in Ref. [ 11. To avoid extended mathematics, this 
so-called quasi-isothermal approach will be demonstrated by a simple MCFC example, though the method itself is quite 
general. 

We consider an MCFC with co,-flow and standard gas supply (see Table 3). Of all parameters influencing the 
quasi-ohmic resistance (i.e. the polarization losses), the local temperature is the most important. For reasons of simplicity 
we assume that the quasi-ohmic resistance is a function of the temperature only. Furthermore, the temperature of the gas 
flows increases from 600 “C at the cell inlet (E = 0) to 700 “C at the outlet (fi = 11,). Hence, the linear relation for the local 
temperature, based on the assumptions 10 and I1 in Table 2. reads 

r(ii)=r,“,,,+L+=873+ lOOf (OILIU,) (15) 
I 

Recall t.hat the corresponding amount of coolant can easily be calculated once the cell voltage is known. The purpose of 
this section is to obtain expressions for both the cell voltage and the local current density. 

The temperature dependence of the quasi-ohmic resistance F is often described by one or more Arrhenius terms [ 10,121. 
Here, we ,will focus on a single Arrhenius term, i.e. we consider the following simplified expression for the quasi-ohmic 
resistance 

where A4 is a constant. This relation :s convenient for a simple analysis and simulates actual quasi-ohmic resistances quite 
well, at least for the relevant temperature range and a suitable value for 4. A convenient expression for the reciprocal value 
of T, in terms of c, is obtained by expanding Eq. (15) 

(17) 

where the relative error is less than 1%. Substitution of Eq. (17) into Eq. (161, yields 

where A is a constant, related to A. However. A is fully determined if $0) as well as the value of 7 at the cell outlet, i.e. 
Y( U, ), are imposed 

T(Ul) 
A= -h- y”(o) ( A > 0; h = 0 for an isothermal cell) (19) 

In the case of standard gas compositions, typical values are F(O) = 1.46 fl cm’ (600 “C) and ?(LI,) = 0.8 0 cm’ 
(700°C). Thus, from Eq. (19), it follows that h is typically 0.6. 

Although the equilibrium constant, K, for the reverse shift reaction is a function of the local temperature, the local 
equilibrium potential is reasonably well determined by using an average value for K, throughout the cell (i.e. K = 0.5 at 
650 “C). Then the expression for the local equilibrium potential in terms of D and T is the same as for the isothermal model 
(see Appendix A in Ref. [l]). But now the local temperature, T, depends on the local fuel utilization 2 through the linear 
relation in Eq. ( 15) 

&[ii,T] =E(T) - gf(ii;K) 

The explicit expression for the function f(ii. K) is rather complicated and is not presented here (see Ref. [l]). The 
reference potential E(T) in Eq. (20) would be the open-circuit voltage (OCV) of the cell, if T would be the inlet 
temperature. The value of E is determined by thermodynamics and appears to be a linear function of temperature in very 
good approximation [3]. Therefore, a constant value for the partial derivative of E with respect to T will be used. 



In the isothermal model the parameter, LY, was introduced to describe the utilization polarization (or Nemst loss). It 
represents a characteristic value for the decrease in the local equilibrium potential due to fuel utilization and is defined as 
the partial derivative of - Vc,[ u,T] with respect to ~1; the derivative at constant temperature. Analogous, the parameter 6 in 
the non-isothermal model will represent a characteristic value for the total derivative of - ceq[ G.T( L)] with respect to ii. 
Based on Eq. (1.5). a characteristic value for this total derivative derives from considerations made in Appendix A h 

h=u+F(ga!--~j=constant (21) 

Hence, as E is a slightly decreasing function of temperature, the parameter 6 in the non-isothermal model will be 
somewhat larger than the (Y in the isothermal model. Analogously to Eq. (2), the linearized version ct,* of the local 
equilibrium potential CC, in the non-isothermal model is given by 

q; [ ii,T( q] = ve; [0.7-(O)] - Gii (22) 

Now that we have expressed the local equilibrium potential and the quasi-ohmic resistance in terms of the local fuel 
utilization G only. the BVP(2) can be solved for C and fC,,,. To this end, either the non-linearized Nemst Eq. (20) or the 
linear approximation in Eq. (22) can be used. It is emphasized that numerical results will be based on the non-linearized 
Nemst equation. whereas analytical results will be based on the linearized Nemst equation. The cases 6 = 0 and & > 0 will 
be treated separately. The case ~5 = 0 is hypothetical and easy to solve. Its solution will be used as a reference solution to 
show clearly the effect of gas utilization, in practical cases where G > 0. 

3.2. Solution for 5 = 0 

In the hypothetical case that the local equilibrium potential is independent of gas utilization, i.e. 5 = 0, solving BVP(2) 
is straightforward. The solution is then given by 

E(x) = -:ln(l -yhx), V,,j( = vq[“vT(o)] - (F)iinuI (23) 

where (7) is the average value of the quasi-ohmic resistance and y is a constant. Respectively, they are defined by 

(34) 

(7) 1 -exp( -A) 

y=70= A 
, (OCyl l:y= lforA=O) 

For an isothermal fuel cell (A = 0) the constant y is determined by the limiting value of Eq. (2.5) for A + 0. 
An expression for the local current density easily follows from the solution given by Eq. (23) 

(25) 

dii Y i”“, 
i”c x) = i,” z ( x) = ~ 

1 - yhx 
(26) 

with i cut the average current density, being equal to i,,u,. Since yh is a constant smaller than unity, the local current density 
i(x) is monotonously increasing, in agreement with the assumptions of a uniform equilibrium potential and a monotonously 
decreasing quasi-ohmic resistance. This behaviour of the local current density changes drastically for realistic values of 
6 # 0. 

3.3. Solution for 15 > 0 

In general. BVP(2) is rather complicated since the local equilibrium potential will be a decreasing function of the fuel 
utilization. However, without a significant loss in accuracy the non-isothermal model can be simplified to an analytical 
model that is equivalent to BVP( 1) for the isothermal model [l]. 

’ In fact. K is about 0.4 at 600 “C and about 0.67 at 700 “C. The inaccuracy in Eq. (21), introduced by taking K = 0.5, can be expressed by a correction 
term (see Appendix A). For the standard fuel composition. it follows that the 6 obtained from Eq. (21) deviates considerably less than 6 mV from the Cu 
based on the actual K(t). The effect of this inaccurac,f on the final value for the cell voltage will be less than 3 mV (a relative error of leas than 0.5%) The 
local equilibrium potential will become more sensitive for the precise value of K(T) if the partial pressure of CO increases. Hence, if the fuel is rich in 
CO. the result of Eq. (21) may be inaccurate. 



The quasi-isothermal problem formulation is based on the mapping ii + II, given by the solution of the following initial 
value problem 

du 
- =: 32 (O<ii<Ll,) 
dL (7) 

u(0) =o (27) 

The end value for II is obtained by integration of Eq. (27) from 11 = 0 to ii = ~1,. In this way (see also Eq. (24)) it follows 
that the end values for u and 11: are ecual. Hence. the mapping E + u does not change the boundary conditions 

u(0) = ii(O) = 0 u(1) =L(l) =u, (28) 

The derivative of u with respect to x is obtained from Eq. (27) by applying the chain rule 

du du dii F(G) dii 
-= --= 
dx dG dx (7) dx (29) 

Eq. (29) can be used to eliminate the variable quasi-ohmic resistance and the meantime derivative dii/dx from the ODE 
for ii in BVP(2). In this way the ODES for i; transforms into an ODE for II 

du 
- z= -!-- (c; [OJ-(O)] - ii ii(u) - vc:,,) 
dx (?>i,, 

where vC,,, is replaced by vCz,, to indicate that the cell voltage is based on the linearized Nemst equation. By using the 
linearized Nemst equation, the obtained ODE can be solved analytically in very good approximation, after which a solution 
for L is obtained by application of the inverse mapping u + 17. For the quasi-ohmic resistance defined by Eq. ( 18). the 
solution u(C) of Eq. (27) and the corresponding inverse mapping are given by, respectively 

u(C) =- 1 -exp 
;;[ [-A:)] 

ii(u) = - ; In 1 - yhV 
( U, 1 

Using the second part of Eq. (3 l), the local equilibrium potential in Eq. (30) can be expressed in terms of u 

FE; [O,T(O)] - &ii = Ce,’ [O,T(O)] + E? In 1 - yh: 
( 1 141 i 

(31) 

The functions u(x) and fi( x) are equal at the boundaries (Eq. (28)) and will be slightly different for intermediate v:alues of 
?c. Nevertheless, consider also the following linear approximation of Eq. (32). obtained by setting ii(x) = u(x) for all x 

fe,* [0,2-(O)] - Lik = fe; [0,7-(O)] - &u (33) 
For practical values of A > 0, this approximation for the local equilibrium potential, as a function of the transformed 

variable II., will be somewhat too strall. but nevertheless reasonably accurate. For instance, for A = 0.6, 6 = 0.2 V and 
II, = 0.8, the maximum deviation in the approximation is easily calculated to be about - 10 mV1 which is small in 
comparison with the value of 5. 

In Appendix A it is shown that substitution of Eq. (33) into Eq. (30) is allowed, if in the latter equation the average value 
(7) is replaced by a somewhat lower value in order to compensate for this artificial decrease of the local equilibrium 
potential. The replacement of ( r’) will be denoted by rm. In this way, a problem formulation for a non-isothermal fuel cell 
is obtained that is much the same as BVP(1) for the isothermal model. Therefore, this so-called quasi-isothermal problem 
formulation will be referred to as BVP(l’). 

3.3.1. Quasi-isothermal problem ,forwulation 

du 
- = +-(q; [O,T(O)] - 6u - vc;,,) 
dx- m ‘In 

(0 <x < 1) Bvp(,,) 

u(O) = 0 u(1) =u, I 

As shown in Appendix A, the mean value r,,, for the quasi-ohmic resistance is accurately approximated by 

(0 for A = 0 

r ln =: (?).(l - a),with 6= 
1 &+zili)ii” (S-f- I) >OforA>O 

(34) 
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The analytical expression for the small correction term 6 is fairly accurate if the artificial decrease in the local 
equilibrium potential (the difference between the Eqs. (32) and (33)) is small, i.e. for moderate values of A. Recall that 
A = 0 if the quasi-ohmic resistance is independent of position, i.e. for the isothermal model. Apparently, 6 is due to the 
non-uniformity of ?. In Appendix B it is shown that a homogeneous distribution of the quasi-ohmic losses is favourable 
with respect to the cell voltage. It is straightforward to verify that the variable resistance 7 (decreasing from cell inlet to cell 
outlet) will cause a more homogeneous distribution of the quasi-ohmic losses than a uniform average resistance (F> 7. In 
Eq. (341, the advantage of the variable quasi-ohmic resistance is expressed by the term (1 - S>. 

Note also that the so-called quasi-isothermal approach is, in fact, a special case of the isothermal problem formulation by 
BVP(l> in Section 2.1. That is. the quasi-isothermal problem BVP(1’) is obtained by using the following parameter settings 
in BVP( l), with linearized Nernst Eq. (2) 

r+r,, a --+ 5, l&y (0) -+ “r; [O,T(O)] 

Once BVP( 1’) is solved for the set (u<x),~~~,,), the actual ii(x) is obtained from the inverse mapping ii(u) given by Eq. 
(31). 

3.3.2. Solution 
Mathematically BVP(1’) is the same a:, the isothermal ‘analytical cell model’, presented in Ref. [ 11. Only the parameters 

have a slightly different value, which is indicated by the tilde ‘ h ‘. The solution of the isothermal ‘analytical cell model’ 
given in Ref. [l], directly applies to BVP(1’) by using the parameter settings given above. 

For instance, a convenient and accurate expression for the cell voltage is obtained from Eq. (18) in [ 1] 

V -* = <,* [O,T(O)] - i&u, - r,i,,,, - ff’r,,,i,,,, cell (first order approximation) (35) 

where the number .? is defined by 

Analogous to the derivation given in the isothermal model, it can be shown that the term 6 11, /2 in Eq. (35) represents 
the Nemst loss. The last two terms in Eq (35) are voltage losses due to the quasi-ohmic resistance F. 

Next, consider the following expression for II. obtained from Eq. (10) in Ref. [ 11: 

u( xii,,) = 
“e; (0) - K,;, 

ii! I 
1 -exp( 

’ -5.x 
- 

, rmiin iI 
The corresponding current distribution in the isothermal model follows from the identity i(x) = i,, du/dx 

i( x;ii,) = 
“r; [wo)1 - G Li! 

exp ( I - -x 
rm r;, 4, 

(36) 

(37) 

An expression for the local current density i”<x> in the non-isothermal model follows from Eq. (36). by using the 
mapping ii(u) (Eq. (31) with y= r,n/F(O:l> and the identity i”(x) = i,,dii/dx = i(x)dii/du 

[ 

30) 
i’( x;ii,) = i( x;ii,)/ - 

_ *II(-:;iin) 
- 

rrn UI I (38) 

Eqs. (35) and (38) for the cell voltage and the local current density are accurate as long as the linearization of the Nemst 
equation is accurate, i.e. up to a fuel utili:<ation of about 80%. The following examples will illustrate this. 

Fig. 4 shows the cell voltage of the non-isothermal MCFC, as a function of the total fuel utilization u,, according to 
several approximations. All the results correspond with an average output current density i,,, equal to 150 mA/cm’. Curve 
A is obtained from the analytical expression in Eq. (35). Numerical computations (curve B) clearly show the accuracy of the 
analytical results for U, I 0.8. At the current state-of-the-art, practical values for U, usually lie between 0.75 and 0.9. Even 
up to an utilization of 90%, the analytical results show reasonably good agreement with the numerical computations. 
However, in practice, the cell voltage may deviate earlier (i.e. for smaller values of u,) and faster from the analytical 

’ In both cases, the local overpotential decreases from inlet to outlet. The local quasi-ohmic losses k are directly related to the (square of the) local 
overpotential and the quasi-ohmic resistance from ES+ (3). 
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Fig. 4. Cell voltage of an MCFC as a function of the total fuel utilization U, for a constant average current density of 150 mA/cm’. Curve A: from Eq. 
(35): curve B: from numerical computations, based on BVP(2) with non-linearized Nernst equation; curves C and D: from the isothermal model [I]. 
(Standard gas supply (Table 3). oxidant utilization is neglected, for parameter values see Table 5.) 

solution than the numerical results suggest. Because, at high fuel utilizations, the partial pressure of hydrogen is lery low 
and an additional concentration polarization may occur as a result of slow mass transport rates in or near the electrodes. 
Evidently, the impact of this effect also depends on the average current density i,,,. However, since we assumed P to be an 
explicit function of temperature only, the additional concentration polarization is not incorporated in our model explicitly. 
Anyway, for (very) high values of U, or i,,,, the imposed values for v”(O) and In, or even the entire expression for r”(G), 
has to be corrected in order to obtain a more realistic picture. But this step is beyond the scope of this article and will be 
omitted. 

In Fig. 4, also the cell voltage acc,ording to the isothermal parameters, instead of the quasi-isothermal parameters, is 
plotted (curves C and D). The parameter values for the several curves are given in Table 5. The analytical value 5 = 0.22 V 
presented in this Table corresponds with a total fuel utilization of 80% and a negligible oxidant utilization. In practice. 
oxidant utilization will have a small irfluence and consequently the actual value of 5 will be somewhat higher (numerical 
calculations that take into account the utilization of oxidant yield an & of about 0.24 V). The parameter C that appears in 
Table 5 wi.11 be explained in Section 2.4. 

Fig. 5 shows the current distribution inside the non-isothermal MCFC for a total fuel utilization of 80% and an average 
current density of 150 mA/cm’. Curve A, is obtained from the analytical approximation in Eq. (38) and shows reilsonably 
good agreement with numerical computations (curve B). The deviations are mainly due to the linearization of Eq. (32), 
which was the origin of the artificial loss in the equilibrium potential. Consequently, the analytical approximation yields an 
average current density that is sometimes too small. Curve AZ is obtained from a very accurate analytical expression, which 
will be introduced next. 

Table 5 
Parameter values accompanying Figs. 4 and 5 (standard gas supply. T(O) = 600°C) 

Curve ocv 
(V) G.9 (“VI ;a cm2 ) 

A “q’ [O,T(O)] = 1.045 ’ 0.18 0.22 h 

B 1/,,[O,T(O)] = I .07 
C y.,: [0;923] = 1.03 0.18 1.08’ 

‘“7 aE,‘CiT c 
(dL cm’) (V/K) w 

l.05d -0.02 x 10.’ 0.003 

-0.02 x 1o-2 
0.003 

D 1/,;[0:923] = 1.06 1.08’ 

‘For U, = 0.8. Determined from Eq. (22) and Ihe condition qe: [u, /2.T(u, /2)] = Ve,* [u, /2;923], using Ve; [u, /2;923] = 0.958 V as a result from Eq. 
(2). 
b Obtained from Eq. (2 I) for U, = 0.8. 
’ The quasi-ohmic resistance at 650 “C is given by r 3 ?(u, /2) = 1.08 (12 cm’), from Eq. (18). 
’ Value derived from Eq. (34). using h = 0.6 ald y = 0.75 (Eq. (25)), corresponding with F(O) = 1.46 and ?(zr,) = 0.8 (a cm’). 
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Fig. 5. Current distribution in a non-isothermal MCFC, according to several approximations. Curve A,: from Eq. (38); curve A,: from Eq. (40); curve B 
shows the results of numerical computations, based on BVP(2) with non-linearized Nernst equation. The average current density Is 150 mA/cm’ at a total 
fuel utilization of 80%. (Standard gas supply (Table 3). 7’(O) = 600 “C, A7’ = 100 K, oxidant utilization is neglected, for parameter values see Table 5 (A 
and B)). 

3.4. Extended relations for the cell coltage and the local current densit?: 

Inaccuracies in the analytical expression for the cell voltage (I!@. (35)) occur as a consequence of the so-called initial dip 
in the non-linearized Nernst equation. This initial dip is the deviation of the equilibrium potential from its linear 
approximation for small fuel utilizations and was neglected in the analytical approach. The obtained expression for the local 
current density (Eq. (38)) is somewhat less accurate than the expression for the cell voltage, since it is also based on the 
linearization of Eq. (33). First, the inaccuracies due to this extra linearization will be diminished. Next, a slightly modified 
expression for the cell voltage will be ink-educed, that accounts for the influence of the initial dip in the Nemst equation. 

It is convenient (see Appendix A) to introduce a quantity. iFi’, which deviates slightly from the equivalent input current 
density ii, 

The extended relation for the local current density is referred to as z:,~ and is given by 

il,,,( x;i,,) = zq s;i;;‘) 1 1 - Y( x;ip) 

( 39) 

(40) 

where iis defined by Eq. (38) and Y(x;iizt) is defined by 

Note that & times the last factor in the expression for Y(X) is equal to the artificial loss in equilibrium potential, i.e. the 
difference of the Eqs. (32) and (33). 

The deviation of the extended relation EL,, from the numerical computations (see Fig. 5) is mainly due to the initial dip in 
the non-linearized Nemst equation (analogous to Fig. 3 in Ref. [ 11). 

Finally, the influence of the initial diF on the cell voltage is expressed by an additional term C/u,, where C is the 
surface between the initial dip and the linear approximation for the equilibrium potential. The extended expression of the 
cell voltage as a function of the total fuel utilization u, is obtained from Eq. (35), analogously to the derivation of Eq. (22) 
in Ref. [I] 

+C; (O.~<U, 50.8) (41) 

Note that C represents the same quantity as in the isothermal model, since it is not attended by a ‘ N ‘. Actually, the value 
of C is slightly influenced by local temperature gradients. However, this dependence is so small that it has been neglected. 
The correction term C/u, is especially significant for values of u, between 0.2 and 0.6. 
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Eq. (41) is a very accurate approximation for the cell voltage in BVP(2) with non-linearized Nernst equation. In fact, the 
approximation for the local current density in Eq. (40) is based on the linearized Nemst equation. Nevertheless, also this 
latter expression was shown to be an accurate approximate solution for the non-linearized problem, for reasonably high 
values of I*, up to about 0.8. 

4. Conclusions 

The following conclusions have been drawn from the present study: 
I. A non-isothermal model for fuel cells with co-flow was developed, based on the assumptions 1 to 9 shown in the 

Tables 1 and 2. In this article the attention was focused on a simplified version of this model, that is also based on the 
additional assumptions 10 and 11 in Table 2. If these additional assumptions are also satisfied, the local temperature inside 
the cell depends linearly on the local fuel utilization. 

2. The linear relation for the tempwature simplifies considerably the non-isothermal fuel cell modeling. It is used to 
determine the analogous of the parameter (Y that describes the Nemst loss in the isothermal model. The linear relation is 
also suitable to express the amount of oxidant required for cooling as a function of the cell voltage, the cell current and the 
total increase in the cell temperature. The accuracy of this latter expression was demonstrated for an MCFC, using results of 
extended numerical computations. At a total fuel utilization of 95%, the deviation in the analytically calculated value for the 
oxidant mass supply was shown to be in the order of 0.3% only. 

3. A quasi-isothermal approach wzs introduced. This approach provides the possibility to generalize the results and 
conclusions drawn from the isothermal model [I], to non-isothermal fuel cells. A quasi-isothermal parameter setting was 
introduced that can be used in the isothermal model, in order to determine analytical relations for non-isothermal fuel cells. 

4. Analytical expressions for the local current density and the cell voltage, derived with the use of the quasi-isothermal 
approach, were verified to be very accurate up to high fuel utilizations, by comparison with numerical calculations. 

5. A close upper bound for the cell voltage of a non-isothermal fuel cell was derived and it was shown that this upper 
bound is achieved if and only if the quasi-ohmic losses are homogeneously distributed over the cell (Appendix B). A 
homogeneous or almost homogeneous distribution of the quasi-ohmic losses is therefore favourable with respect to the cell 
voltage and fuel cell efficiency. 

5. List of symbols 

specific heat at constant pressure of the anode gas mixture 
specific heat at constant pressure of the cathode gas mixture 
surface between the initial dip in V&(U) and the linearized function Ve; (u) 
reference potential 
enthalpy change per unit time 
enthalpy increase, per unit time, due to temperature rise 
reaction heat at constant pressure per unit time 
constant of Faraday 
local current density 
total current equivalent of the fuel supply 
total current equivalent of the fuel supply per unit cell surface 
total current output of a fuel cell 
total current output of a fuel cell per unit cell surface; average current density 
equilibrium constant for concentrations in the reverse shift reaction 
anode mass flow 
cathode mass flow 
transfer of heat to a system per unit time 
uniform quasi-ohmic resistance in the isothermal model 
non-uniform quasi-ohmicresistance in the non-isothermal model 
average value of the quasi-ohmic resistance rl 

a mean value of the quasi-ohmic resistance 7 (see Eq. (34)) 
universal gas constant 
local temperature for the gas flows 

J/k 
J/kg 
V 
V 
W 
W 
W 
C/m01 
A/m’ 
A 
A/m’ 
A 
A/m’ 

kg/s 
kg/s 
W 
0 m’ 
R m2 

R m2 
R m’ 
J/mol K 
K 
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K AT total temperature difference in a fuel cell (inlet to outlet) 
u(x) fuel utilization in the isothermal model 
ii{ x) fuel utilization in the non-isothermal model 
u(ii> invertable mapping that results in a quasi-isothermal problem formulation 
Ul total fueli utilization 

v,,(u) Nemst potential in the isothermal model V 
V,,[E,Tl Nemst potential in the non-isothermal model V 
ye;(u) linear fit for v,,(u) V 
veq* [ &T(E)] linear fit for V&[ ii,T(ii)] V 

Sell cell voltage in the non-isothermal model with non-linearized Nemst equation V 

Cl, cell voltage in the non-isothermal model with linearized Nemst equation V 
W delivered power W 
X scaled, i.e. relative, distance to the cell inlet 
if dimensionless number 

Greek letters 

characteristic value for the derivative of - Vr,( u) with respect to u 
analogous of (Y, for use in the non-isothermal model 
constant related to h (see Eq. (25)) 
constant determined by 80) and ?(u, ) (see Eq. (19)) 
actiivation energy for the conduction 
constant of proportion in the simplified expression for the reaction heat 

V 
V 

J/mol 
V 

Abbreviations 

MCFC 
BVP 
ODE 

Symbols 

molten carbonate fuel cell 
boundary value problem 
ordinary differential equation 

* 
ext 

refers to the non-isothermal model 
attends potentials that are based on a linearized Nemst equation 
extended relation 
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Appendix A 

A.I. The parameters 5, x, r,,, and i:i’ 

A.I.l. The parameter &, based on the lir.‘ear relation jiw T 
In the non-isothermal model, the parameter - 5 represents a characteristic value for the total derivative of the 

equilibrium potential 

dT af 
- - eq E T ii T do aT [ , ( )]formostuE(O,l) (‘41) 

where the index T indicates that the deriv,ative holds for a fixed temperature. This derivative is equal to the parameter (Y in 
the isothermal model by definition. Furthermore. the derivative of T with respect to ii easily follows from the linear relation 
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for the local temperature derived in Section 2 (Eq. (131). For instance, for the MCFC considered in Section 3. based on Eq. 
(15). the expression for 5 can be rewritten as 

100 ar;req 
ti= a- ---[a,T(o)] (A21 

The partial derivative of the equilibrium potential with respect to T is determined from Eq. (20) (recall that K was 
considered to be independent of T, in this equation). Also using the linear approximation for the equilibrium potential in the 
isothermal model, at an average tempe,rature of 923 K, we successively obtain 

(‘43) 

Analogously to the determination 01‘ the parameter cr in the isothermal MCFC model [I], it is convenient to determine G 
in the point of inflection of the equilibrium potential. Since this point must be in the neighbourhood of Z = 0.5 [l]. we set 
ii = 0.5 in Eq. (A3). The result apprcximates the average value of afcq/a7’ over the interval [0, 11. Substitution of this 
approximatse value into Eq. (A2) yields a suitable characteristic value for B (see also Eq. (21) Note that a small 
improvement can be achieved if ,f(o,s,k) is more closely approximated by adding the difference between I$,* and V,,(O). 

So far, the temperature dependents: of K was neglected. For the sake of completeness we will now investigate the 
inaccuracy due to this simplification. When the K in Eq. (44) is considered as a function of temperature, this equation can 
still be elaborated as previously explained. The chain rule for differentiation then yields 

(A41 

A typical value for the derivative (d K/dT)(acu/aK) is obtained from the linear approximation [ a( K = 0.67) - a( K = 
0.4)]/100, where (Y(K) follows from the isothermal model at 650 “C by using adapted values for K. corresponding with 
700 or 600 “C, respectively. For the standard fuel composition (Table 31, the derivative is typically 10-j X V/K and the 
last term in Eq. (A41 contributes about 6 mV to the value of & (~4, = 0.8). 

Nevertheless, for the standard fue. composition, the actual difference in the calculated values for E appears to be 
considerably less than 6 mV. Because. in fact, E depends on K(T) and so the values for aE/aT in Eqs. (A3) and (A4) are 
different. Consequently, for the standard fuel composition. these equations generate almost the same value for c?cC,/~T. 

A. 1.2. The parameter x, for the cell reaction Hz i- l/20, + H,O 
If the enthalpy of formation Ah:;: of 1 mole of water is known, the corresponding value of x can easily be calculated. 

For instance? at 600 “C and atmospheric pressure, AhE,$ is equal to -247 kJ/mol (based on the JANAF tables). The 
electrical current, corresponding with the electrochemical conversion of hydrogen is given by Faraday’s law. being 2 F 
A/mol hydrogen. The parameter -x was defined in Section 2.2.2, as the ratio of the reaction heat and the cell current. 
Hence, for the reaction of hydrogen with oxygen, x is given by 

Ah”?0 I\“[ 
- = 1.28V x=-- 2F 

If also the shift reaction occurs, it is convenient to use a slightly adapted value for x. Below, a suitable correction term 
will be introduced that depends on the inlet fuel composition and the total fuel utilization u,. The mole fractions of H? and 
CO at the anode inlet. at equilibrium, are respectively denoted by X,(O) and X,(O). Furthermore, hh$f’ refers to the 
reaction heat of the shift reaction (- 36 kJ/mol at 600 “C and atmospheric pressure). In order to calculate the amount of 
CO converted by the shift reaction we consider two alternative subprocesses. In the first subprocess, the inlet fuel 
composition is heated to the outlet temperature of the fuel cell and the gas composition changes only as a result of variations 
in K(T). The amount of moles of CO converted in this first step is given by X,(0; K,,,,,) - X,(0; Koullc,) times the total (and 
constant) number of moles in the fuel flow. The constants K,,,,, and K,,,,,, represent the equilibrium constant for the 
reverse shift reaction at the inlet and outlet temperature, respectively. In the second step. the fuel is converted by an 
isothermal fuel cell. The amount of CO converted in this latter step is proportional to X,(O;K,,,,,,) X c(u,;K,,,,,,,~) (the 
explicit expression for the reaction coordinate P(u,) is given in Ref. [I]). The modified value of x represents the ratio of 
the total reaction heat and the cell current 

hh”zO lbot Xz(O;K,,,,,) - XAO;Kout,et ) [ 1 - l.( U, ; Koutler )] A hi;;; 
-- x=-- 2F [ X,(O) + x2(o>l~~I 2F 
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A. 1.3. The parameter rm 
In fact, the mean value r,,, for the ql,asi-ohmic resistance is the limiting value of the following combined iteration 

process 

I 
d% 
dx - hi<; [W(O)] - cu,-, - qcr;,]> u,(O) = 0, i=3,4,5,... 

with the following initial values, defined in Section 3 

q.(x) =i(x) (05x5 1) r3= (P) 

Recall that the constant u, is used to denote the total fuel utilization. The derivation of the ODE for i = 3 has been 
explained in Section 3, omitting the index ‘3’. It was shown how the variable quasi-ohmic resistance in the ODE for k is 
replaced by its average value r3 = (?). Attention was also paid to the linearization of the ODE for i = 3 and the 

corresponding artificial loss in equilibrium potential. All next iterations are based on the same principle. However, now an 
exact correction for the artificial loss in equilibrium potential is made. by a local adaption of the average quasi-ohmic 
resistance. instead of a global adaption. This yields a ‘quasi-ohmic resistance’ that depends on position again, which give 
rise to the next iteration cycle: the calculaion of the average value r4 and the function ~1~. 

Theoretically this process can be continued, and the quantities u,(x), r4, u,(x), r5,. . . can successively be obtained 
from the iteration process. For the same reason as given in Section 3 for the first step, the end condition I(~( 1) = U, will hold 
for all i. Consequently, all r, must lie within limits that are independent of i. Because otherwise the end condition cannot 
be satisfied for some i. since the derivative du,/dx in the corresponding ODE would be too large (or too small). 
Furthermore, it can be shown that u,(x) 2 u,~ ,(x) for all i, and that r; is monotone decreasing with respect to i *. So, r, 
converges to a limit r, as i tends to infinily. This implies that I(~ converges to a limiting function. which satisfy BVP( I’) in 
Section 3. This limiting function will be denoted by II,. In Section 3.3, an accurate approximation for r,,, was used, which 
will be derived below. The expression for the cell voltage derived in Section 3.3 is accurate. But the difference between 
u,(x), referred to as u(x), and ~4,( X) was neglected. Consequently, the expression for the local current density, derived in 
Section 3.3, is somewhat less accurate, since it is, in fact, based on the function U, instead of the required u. 

Assuming that the maximum difference between U,(X) and U,(X) is small, an accurate analytical approximation for rm 
can be derived as follows. Dividing the ODES for u,(x) and u,(x) we obtain (also using the initial settings for u1 and r3) 

d U, (F) c*, [O;T(O)] - &u, - PC,*,, 
-=-- 
% r, c,* [O;T(O)] - Gii - I’,;,, 

By setting U,(X) = u3( X) on the right-hand side of this equation (recalling that u,(x) 2 u~( x)) and integrating the result 
from uj = 0 to u3 = u,, we obtain 

(8 
/ 

~1 Fe,* [W(O)] - Gu, - cc:,, du 

rm ’ 111. o “e; [O;T(O)] - GE( LL) - cc;,, ’ 
(A51 

where also the end condition u,(l) = u, is used. Next, from a suitable standard expansion of the right-hand side of this 
equation, it can be shown that the following upper bound is fairly close to the exact value of r,,, 

with 

Li 26 

a = c;,,*[O;T(O)] - cc;l, = ~ (5 + 2( F)i,,)u, 

The approximation for a is based on the so-called double linear relation or zero order approximation for the cell voltage, 
obtained by omitting the last term in Eq. (35) (see Ref. [ 11; without a further loss in accuracy r,,, is replaced by ( ?> in the 
approximation for a). 

’ Under the condition that r”(C) is a monotone decreasing function of 17. In the general case, the inequality U, 2 u,_ , is not necessarily valid and the 

proof of convergence is somewhat more extended. 



In specific cases. the expression for rm given in Eq. (A6) (or a more complete expansion of Eq. (A5)) can be elaborated 
by using the inverse mapping ii(~). The expression for r,, that was given in Section 3.3 (Eq. (34)). is obtained by using the 
mapping in Eq. (3 I). 

A. 1.4. The parameter ip,“’ 
The extended expression for the local current density given in Section 3.4 is obtained from a linearization around the 

limiting solution II,. This linearization makes it possible to bypass the iterations for i 2 4 in a more accurate way than by 
neglecting the difference between u3 and II,. Here? the main point of this exercise will be highlighted, i.e. the introduction 
of the parameter i;:‘. 

The limiting solution II, is based on the parameter value I’,, whereas the function uj is based on the parameter value 
( 7). However, both functions correspond with the same cell voltage. since this quantity remains unchanged by the iteration 
process. Hence, both functions must also correspond with the same ‘total resistance’ that determines the cell voltage. In the 
isothermal model (see Eq. (25) in Ref. [I]) it was shown that this total resistance consist of the load resistance, the uniform 
quasi-ohmic resistance and the ’ utili zation resistance’, being equal to w/2i,,. The utilization resistance depends on the 
equivalent input current density ii,. When switching from a quasi-ohmic resistance (7) to a quasi-ohmic resistance r,,, (i.e. 
bypassing the iterations for i 2 4) the equivalent input current density has to be adapted in such a way, that the total 
resistance remains constant. Of course this is a mathematical trick and does not affect the real value of i,,. So, the parameter 
i:t’ easily follows from the required change in the utilization resistance, determined by 

It can be made clear that this equa:ion for i,,ext has to be be used in combination with Eq. (A6) for rrn. Recall from Eq. 
(34). that the parameter rm is equal ‘.o the average resistance (7) times the factor (1 - 6). When rewriting Eq. (48). one 
may approximate 6/(1 - S) by 6 in order to obtain Eq. (39). 

Eq. (A6) gives an approximation for r,, hence for 6. The obtained expression for i::’ is recommended if this 
approximation for 6 is used. However, if S is more accurately determined. it is recommendable to use the identity 
i:i’ = i,,/ J1-s instead of Eq. (39). It can be shown that this latter identity yields the most accurate result, as long as 6 is 
very accurately known. 

Appendix B 

B. 1. A close upper bound,for the eel,’ voltage in BVP(2) 

Denoting the average value of the square root of the quasi-ohmic resistance by (fi) (analogous to Eq. (24)). it will be 
shown that 

with equality if and only if Y( x)L?( s) = constant for all X. The upper bound in Eq. (A8) is the generalization of the upper 
bound for the cell voltage that was dlxived from the isothermal model, hence for the special case in which 7(x) =y r for all 
x [ 11. 

In order to show the validity of E:q. (A8) we multiply both sides of the ODE in BVP(2) by dll/dx and integrate with 
respect to x from zero to unity. Rewriting the result, using Eq. (4). we obtain 

The upper bound in Eq. (A8) is cbtained by estimating the last integral in Eq. (A9). 
This estimation is based on the Lemma of Cauchy-Schwarz [ 18,191, which states that the following inequality holds for 

two continuous functions f(G) and g(E) 
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Applying the Lemma of Cauchy-Schwarz on the following integral 

199 

by setting f(i) = $r”( c) $F( n) and ~(17) = l/{z, we obtain 

Using the identity zxx> = i,,,da/dx (Eq. (4)), this inequality can be rewritten as 

(All) 

Substitution of this inequality into Eq. (AS’) yields Eq. (AS). 
The Lemma of Cauchy-Schwarz also states [19], that the equality in Eq. <AlO) holds if and only if f= constant x g. 

Hence, the equality in Eq. (Al 1) holds if and only if fiv? = constant/ $c. So, the cell voltage is maximum if the 
quasi-ohmic losses are homogeneously distributed over the cell 

?( X) i?( X) = constant for all x e the upperboundfor cLe,, in Eq. (A8) holds 

For the MCFC considered in Section ?I and a total fuel utilization of 80%, the deviation of the cell voltage from the 
obtained upper bound is 10 mV (from Eq. (41)). 
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